
LLNL-MI-692819

DOE-COE Breakouts

J. R. Neely, M. W. Epperly

May 23, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Managing	the	Memory	Hierarchy	
Breakout	#2	

Bronson	Messer	(ORNL),	et	al.	



What	are	the	pracAcal	limitaAons	of	using	current	
programming	models	for	managing	the	memory	

hierarchy?	
•  We	don’t	know	what	we	really	need	now,	therefore	the	limitaAons	
are	not	fully	known.	

•  Strong	consensus	that	many	users	have	idenAfied	a	need	to	
manage	the	hierarchy	
– Electronic	structure,	laKce	QCD,	determinisAc	transport,	other	mulA-
physics	codes	given	as	examples	of	codes	that	will	not	fit	into	small,	fast	
memories.	

•  Memory	footprint	needs	a	normalizaAon	to	be	meaningful,	e.g.	
bytes/peak	TFLOP	or	size/bandwidth.	

•  For	many	codes,	there	is	a	minimum	amount	of	memory	required	
per	MPI	rank.		



What	are	the	pracAcal	limitaAons	of	using	current	
programming	models	for	managing	the	memory	

hierarchy?	
•  The	“COE	plaZorms”	(SC	ASCR	2018-era	plaZorms	at	NERSC,	OLCF,	
and	ALCF	and	ASC	plaZorms	around	same	Ame)	will	have	HW	
features	that	smaller	plaZorms	will	not	share	(e.g.	Linux	clusters	
with	older	GPUs)	

•  One	possibility	is	to	use	HBM	as	a	cache,	but	managing	that	cache	
explicitly	as	a	user	seems	daunAng.		

•  MPI	SHM	provides	a	picture	of	how	bad	things	can	be.	
– Can	lead	directly	to	wriAng	a	hand-made	memory	manager	



What	are	the	pracAcal	limitaAons	of	using	current	
programming	models	for	managing	the	memory	

hierarchy?	
	
•  True	shared	address	space—where	the	system	“finds”	the	data	for	
you—opens	up	several	possibiliAes	for	tools	and	finer	user	control.	

•  Important	to	separate	the	disAnct,	but	related,	issues	of	data	
placement	and	data	layout	
– Data	placement	is	physical	memory	locaAon	
– Data	layout	is	how	a	program	traverses	does	data	structures	(e.g.	SoA	vs.	
AoS)	



Languages,	direcAves,	acributes,	other?	

•  Libraries	and	consistent	API’s	preferred	to	direcAves.	
– Portability	is	the	primary	driver	here.		
– Not	dependent	on	compiler	support.	
–  Indeed,	you	can	package	a	library	with	the	code.	
–  Importantly,	you	can	hide	direcAves	with	macros.		It	is	more	a	compiler-
support	issue.		

•  WaiAng	for	language	standards	to	take	hold	is	not	a	realisAc	
strategy	for	the	future	that	is	upon	us.		
– Also,	probably	premature	to	design	features	for	standards	(cf.	earlier	
comment	about	what	is	needed).	



Languages,	direcAves,	acributes,	other?	

•  Wrapping	plaZorm-dependent	allocaAon	and	placement	methods	
is	already	common.	

•  We	do	need	some	guidance	from	the	vendors	to	determine	the	
scale	of	the	gap	we	need	to	bridge	between	what	is	possible	and	
what	is	desired.	
– But,	the	vendors	have	to	opAmize	over	finite	development	resources	to	
effecAvely	answer	the	quesAon.	

– Nevertheless,	a	concise	list	of	guarantees	would	help.		



What	is	the	proper	balance	between	user	control	and	
runAme	control	for	memory	placement	and	

management?	
•  “Balance”	is	perhaps	the	wrong	word.		

•  Nevertheless,	strong	consensus	for	a	combinaAon	of	reasonable	
defaults	and	the	possibility	of	fine	control	

•  There	are	always	tradeoffs	between	absolute	performance,	
maintainability,	resources,	and	portability.	

•  Opaqueness	for	performance	is	a	huge	potenAal	problem.	
– Already	a	problem	today	in,	e.g.,	PGAS	languages	



What	is	the	proper	balance	between	user	control	and	
runAme	control	for	memory	placement	and	

management?	
•  Page	faults	or	allocaAons	exceeding	device	memory	need	to	be	
able	to	be	seen.	
– Even	to	the	point	of	stopping	program	execuAon	

•  If	people	have	to	confront	full	complexity	to	get	started	that	is	a	
problem.			
–  It	was	suggested	this	was	a	lesson	learned	with	the	Cell	processor.	

•  Tool	writers	will	need	to	pick	some	abstracAons	to	provide	
informaAon	between	“fail”	and	gricy	details	of	paging.	
– These	chosen	abstracAons	might	need	to	be	the	same	as	those	under	user	
control.		



What	is	the	proper	balance	between	user	control	and	
runAme	control	for	memory	placement	and	

management?	
•  We	oeen	talk	about	memory	management	and	mean	dynamic	
memory	management:	That	is	a	big	assumpAon.		
– We	should	discuss	staAc	memory	and	how	the	runAme	will	manage	it,	
parAcularly	thread-staAc		

•  If	you	maintain	your	codebase	frozen	in	amber,	you	have	to	accept	
that	new	capabiliAes	and	HW	features	may	well	be	beyond	your	
reach	to	exploit	(e.g.	the	use	of	Fortran	COMMON	blocks).	




